
Postprint

1

Business Process Model Abstraction

Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
(Artem.Polyvyanyy,Sergey.Smirnov,Mathias.Weske)@hpi.uni-potsdam.de

Summary. In order to execute, study, or improve operating procedures companies
document them as business process models. Often business process analysts capture
every single exception handling or alternative task handling scenario within a model.
Such a tendency results in large process specifications. The core process logic becomes
hidden in numerous modeling constructs. To fulfill different tasks companies develop
several model variants of the same business process at different abstraction levels.
Afterwards, maintenance of such model groups involves a lot of synchronization effort
and is erroneous.

We propose an abstraction technique that allows generalization of process models.
Business process model abstraction assumes a detailed model of a process to be
available and derives coarse grained models from it. The task of abstraction is to tell
significant model elements from insignificant ones and to reduce the latter. We propose
to learn insignificant process elements from supplementary model information, e.g.,
task execution time or frequency of task occurrence. Finally, we discuss a mechanism
for user control of the model abstraction level—an abstraction slider.

1.1 Introduction

Business process modeling is crucial when it comes to design of how companies
provide services and products to customers or how they organize internal
operational processes. To improve the understanding of processes and to enable
their analysis, business processes are represented by models [5, 9, 18]. Process
models are used for different purposes: to communicate a message, to share
knowledge or vision, as a starting point for re-designing or optimizing processes,
or as precise instructions for executing business tasks. In such conditions, the
goal of a process model is to capture working procedures at a level of detail
appropriate to fulfill its envisioned tasks. Often, achievement of such a goal
results in complex, “wallpaper-like” models, that tend to capture every minor
detail and exceptional case that might occur during process execution.

The desired level of model granularity also depends on a stakeholder
working with a model and a current task. Top level company management

mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de; Sergey.Smirnov@hpi.uni-potsdam.de; Mathias.Weske@hpi.uni-potsdam.de

2 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

appreciates coarse grained process descriptions that allow fast and correct
business decisions. At the same time, employees who directly execute processes
value fine granular specifications of their daily job. Thus, it might be often the
case that a company ends up with maintaining several models of one business
process.

Abstraction is generalization that reduces undesired details in order to
retain only essential information about an entity or a phenomenon. Business
process model abstraction goal is to produce a model containing significant
information based on the detailed model specification. Significant information
is the information required by a certain stakeholder to fulfill his/her tasks.

We propose a business process model abstraction methodology that can
be summarized as follows. As input we assume to possess a complex process
model (a detailed process specification). Afterwards, a number of abstractions
are performed on the initial model. Conceptually, each abstraction is a function
that takes a process model as input and produces a process model as output. In
the resulting model initial process fragment gets replaced with its generalized
version. Thus, each individual abstraction hides process details and brings a
model to a higher abstraction level.

When applied separately, process model abstractions do not provide much
value to an end user. Rather, it is of interest to study how individual abstrac-
tions can be combined together and afterwards controlled in order to deliver
the desired abstraction level. As a solution we propose an abstraction slider—a
mechanism providing a user control over process model abstraction.

The rest of the chapter is organized as follows. In the next section we
discuss several application scenarios of process model abstraction. Section 1.3
introduces a slider and explains how it is employed for the control of process
model abstraction. Transformation rules and their composition aimed to allow
process model graph generalization are discussed in section 1.4. Section 1.5
presents results of a case study on abstraction efficiency and usefulness con-
ducted together with an industry partner. The chapter concludes with a survey
on related work and summarizing remarks.

1.2 Process Model Abstraction Scenarios

Abstraction generalizes insignificant model elements. Abstraction scenarios
have direct implication on the identification of insignificant elements. In this
section we clarify the concept of process model abstraction and discuss its
common use cases. We then extract abstraction criteria from the proposed use
cases. Abstraction criteria are properties of process model elements that enable
their partial ordering. Afterwards, obtained partial ordering is used when
telling significant model elements from insignificant ones. It is not claimed for
the proposed list of scenarios to be complete. It should be extended once there
is a demand for new abstraction scenarios.

1 Business Process Model Abstraction 3

Essentially, business process model abstraction deals with finding answers
to two questions of what and how :

� What parts of a process model are of low significance?
� How to transform a process model so that insignificant parts are removed?

Answers to both questions should address the current abstraction use
case. The choice of an abstraction criterion helps in answering the what
question. Whereas, an answer to the how question allows deriving models
where insignificant elements get generalized.

Considering aforesaid, business process model abstraction is a function for
which holds:

� a detailed process model and an abstraction criterion are the input of this
function; an abstraction criterion helps to tell significant model elements
from insignificant

� the function output is an abstracted process model
� from the structural perspective abstraction reduces the number of model

elements
� from the semantic perspective abstraction generalizes initial model.

When studying a business process model analysts might be interested
in tasks which are executed frequently in a process. One can presume that
frequent tasks capture main process logic while non-frequent ones constitute
seldom alternative scenarios or exceptional flow. Preservation of only frequent
process tasks might allow faster understanding of the core process logic by an
end user. In order to fulfill the described use case, one might classify significant
process elements as those that have a high occurrence number. Thus, the
abstraction criterion is the mean occurrence number of a process task.

Mean occurrence number of a process task (mi) is the mean number that
the process task i occurs in a process instance.

Alternatively, analysts might be interested in process tasks that consume
most of the process execution time (execution effort). These tasks are natural
candidates for being studied during the task of process improvement. Once such
tasks are optimized, the overall process execution time might drop considerably.
Also, in many cases, cost required to execute process tasks is proportional to
the execution time. Process task effort is another process model abstraction
criterion.

Relative effort of a process task (er) is time required to execute the task.
Absolute effort of a process task (ea) is the mean effort contributed to the

execution of the process task in a process instance. Absolute effort can be
obtained as the product of the relative effort and the mean occurrence number
of the process task.

As proposed, the effort of a process task is measured in time units (e.g.,
minutes or hours) and quantitatively coincides with the duration. However,
semantically the effort concept resembles the concept of cost. For instance, if

4 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

XOR

XOR

SB-KH

expert

SB-KH

expert

0.92 0.08

Premium

membership

Representative

informed

No premium

membership

Send

documents to

client

Documents

sent

Contact a

representative

1 minute(s)
0.92 minute(s)

1 minute(s)
0.08 minute(s)

Fig. 1.1. Example of the EPC fragment enriched with probabilities and efforts

two process tasks run in parallel their total effort is the sum of efforts of each
task.

The cost of process tasks and the overall process execution cost are impor-
tant properties of business processes. Similar to process task effort one might
define a process model abstraction criterion of process task cost.

Process model abstraction criteria can be also defined on process fragments.
For example, one might be interested in “typical” executions of a business
process model. A typical business process execution means that among all
possible ways of a process completion it is the one that is executed most often.
Applying such an abstraction to a process model should result in a new model
which reflects only most common process scenarios. A process scenario is a
minimal part of a process model that covers certain instance execution.

Probability of a process scenario (Pi) is the probability of a process scenario
i to happen when executing the process.

Similarly, process scenarios with the highest duration or cost may be in the
focus of process abstraction. As a result of the abstraction one should obtain
a model representing either the most time consuming or the most “expensive”
process execution paths.

Effort of a process scenario (Ei) is the effort to be invested in the execution
of a process scenario i and can be found as the sum of efforts of all the tasks
executed within this scenario.

Figure 1.1 shows the process model fragment, modeled using EPC no-
tation [10, 16], and illustrates presented concepts. Here, all the outgoing
connections of the exclusive or split are supplied with transition probabilities
that sum up to one. All the other connections are assumed to have the transi-
tion probability of one. Each function is enriched with relative and absolute
(visualized in italic type) efforts given by the time interval in minutes that a

1 Business Process Model Abstraction 5

worker needs to perform a function. For instance, the function “Contact a rep-
resentative” has the relative effort of one minute, meaning that it is expected
to take one minute of worker’s time once reached in a process instance. On
average, this function requires 1 · 0.92 = 0.92 minutes in every process instance
which constitutes the absolute effort of the function. The absolute effort is
obtained under the assumption that the process fragment is reached only once
in a process instance with the probability of one.

Often, abstraction criteria require models to be annotated with additional
information like statistical data on average time required in order to perform
process tasks, probabilities of reaching tasks in a process, etc. In many cases
incorporation of such information requires extension of modeling notation.

1.3 Abstraction Slider

In this section we focus on the what question of process abstraction. We
propose a slider metaphor [13] as a tool for enabling flexible control over the
process model abstraction level. We explain how the slider can be employed
for distinguishing significant process model elements from insignificant ones.
We provide an example of applying the abstraction slider.

When a user selects suitable abstraction criterion, the desired level of
abstraction should be specified. Abstraction level cannot be predicted without
a priori knowledge about the abstraction context. In the best case, the user
should be able to change abstraction level smoothly from an initial detailed
process model to a process model containing only one task. In this example,
the single abstracted process task semantically corresponds to the abstraction
of the whole original process model.

A slider is an object that operates on a slider interval [Smin, Smax]. The
interval is constrained by the minimum and maximum values of the abstraction
criterion. The slider specifies criterion value as a slider state s ∈ [Smin, Smax]
and allows operation of a state change within this interval.

All of the discussed abstraction criteria (see section 1.2) have quantitative
measurement. Therefore, criterion values for a particular criterion type are
in a partial order relation. Correspondingly, the partial order relation can
be transferred on process model elements by arranging them according to
values of some particular criterion. For example, if a criterion is task relative
effort then a two minutes task precedes a four minutes task. The partial order
relation enables element classification. It is possible to split model elements
into two classes: those with criterion value less than and those with criterion
value greater than some designed separation point. Elements which are the
members of the first class are assumed to be insignificant and have to be
omitted in the abstracted model. Members of the other class are significant
and should be preserved in the abstracted model. We refer to the separation
point according to which the elements classes are constructed as abstraction
threshold. Assuming an abstraction threshold of three minutes in the example

6 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

0 1

0.00

(a) Initial process model

0 1

0.37

(b) Slider set to 0.37

Fig. 1.2. Process model abstraction slider (function names unreadability intended)

discussed above, the two minutes task is insignificant and has to be reduced.
On the opposite, the four minutes task is significant and should be preserved
in the abstracted model.

Thus, a process model abstraction slider is a slider which for a given process
model fragment and a specified abstraction threshold classifies the fragment
as significant or not. The abstraction slider interval is defined on an interval
of abstraction criterion values and the slider state is associated with the
abstraction threshold.

A slider control regulates the amount of elements preserved in an abstracted
process model. In the simplest case a user specifies an arbitrary value used as
a threshold (which means that the slider interval is [−∞,+∞]). The challenge
for a user in this approach is to inspect a process model in order to choose
a meaningful threshold value. A threshold value which is too low makes all
the process model elements to be treated as significant, i.e., no nodes or edges
are reduced. On the other hand, a threshold which is too high may result in a
one task process model. To avoid such confusing situations, the user should
be supported by suggesting an interval in which all the “useful” values of
abstraction criterion lie. Alternatively, the abstraction slider can control a
share of nodes to be preserved in a model. In this case abstraction mechanism
has to estimate the threshold value which results in the reduction of the
specified share of the process model.

Figure 1.2 exemplifies the work of process model abstraction slider. It
provides a comparison of the initial process model (a) and its two abstracted
models. The business process is captured in EPC notation. In the example
we have used the abstraction criterion of absolute effort of a process function.
Functions with a higher absolute effort are considered to be more significant.

1 Business Process Model Abstraction 7

(a) shows the business process model that corresponds to the abstraction
slider state of 0.00—the original process model. The model visualized in (b)
is obtained by changing the abstraction threshold to 0.37. In the proposed
example more than 50% of the model nodes get reduced. The process model
shrinks to one function when the slider state is set to 1.00.

1.4 Process Model Transformation

In this section we address the how question of the process model abstraction
task. We base our solution on process model transformation rules. In this
section two classes of abstraction rules are introduced: elimination and aggre-
gation. Afterwards, requirements for abstraction and their influence on the
transformation rules are discussed. We argue when each of the techniques is
appropriate. Finally, an example of transformation rules is presented.

1.4.1 Elimination vs. Aggregation

When the insignificant process model elements are identified, they have to be
abstracted. Several techniques can be proposed for reduction, we distinguish
two: elimination and aggregation.

Elimination means that a process model element is omitted in the abstracted
process model. The main feature of elimination is that the resulting model
does not contain any information about the eliminated element. Elimination
has to assure that the resulting process model is well-formed and that the
ordering constraints of the initial model are preserved.

Aggregation implies that insignificant elements of a process model are
grouped with other elements. Aggregation preserves information about the
abstracted element in the resulting model. When two sequential tasks are
aggregated into one, properties of the aggregating task are derived from the
properties of the aggregated tasks, e.g., the execution cost of an aggregating
task is the sum of execution costs of aggregated tasks.

In general case the rules of elimination are simpler than the aggregation
rules. Aggregation requires more sophisticated specification of how the proper-
ties of the aggregated elements influence properties of aggregating elements.
In many cases elimination is insufficient, since it leads to the loss of important
information. If an abstraction cannot tolerate information loss aggregation
should be used.

1.4.2 Transformation Requirements

Preservation of the process execution logic is an essential abstraction require-
ment. This means that process model abstraction should neither introduce
new ordering constraints, nor change the existing ones. For instance, if an

8 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

original process model specifies to execute either activity A or B, it should not
be the case that in the abstracted model these activities appear in a sequence.
Another essential abstraction requirement is that well-formed process models
should be produced. Thus, used transformation rules should take into account
features of modeling notations. Consequently, we can expect different rules to
be used, e.g., for EPC and for BPMN.

Further, extra requirements on abstraction rules can be imposed. For in-
stance, a company may use process models for estimation of the workforce
required to execute business processes. In this case information about the
overall effort of process execution should be preserved. Process model abstrac-
tions preserving process properties are called property preserving abstractions.
Elimination can be used in a property preserving abstraction with restrictions,
since once a model element is omitted all the information about its properties
is lost. Therefore, elimination can be applied only to those elements which do
not influence the property being preserved.

Every new requirement imposed on an abstraction restricts transformation
rules and makes the design of these rules more complex. It is important to
learn which class of process models can be abstracted to one task by a given
set of rules and abstraction requirements. An abstraction which is not capable
of reducing a process model to one function is called best effort abstraction.
Such an abstraction tries to assure that a given process model is abstracted
to the requested level using the given set of rules.

1.4.3 Transformation Rules

In [14] a process model abstraction approach is presented. Its cornerstone is
a set of abstraction rules. We would like to use these rules as an illustration
of the concepts discussed earlier and demonstrate how these rules can func-
tion together with the abstraction slider and task absolute effort abstraction
criterion.

The approach presented in [14] is capable of abstracting process models
captured in EPC notation. Two requirements are imposed on abstraction:

1. ordering constraints of a process model should be preserved,
2. absolute process effort should be preserved.

The approach is based on the set of transformation rules called elementary
abstractions. Four elementary abstractions are proposed: sequential, block,
loop, and dead end abstraction. Every elementary abstraction defines how
a certain type of a process fragment is generalized. The order of elementary
abstractions can vary. Application of an elementary abstraction may succeed
once there is a suitable process fragment in a process model. This also means
that any function can be the result of a prior abstraction.

1 Business Process Model Abstraction 9

e0

f1

e1

f2

e2

e0

e2

fS

Fig. 1.3. Sequential abstraction

Sequential Abstraction

Business process models of high fidelity often contain sequences of tasks. In
EPCs such sequences turn into sequences of functions. Sequential abstraction
replaces a sequence of functions and events by one aggregating function.
This function is more coarse-grained and brings a process model to a higher
abstraction level.

Definition 1. An EPC process fragment is a sequence if it is formed by a
function, followed by an event, followed by a function.

The mechanism of sequential abstraction is sketched in Figure 1.3. Functions
f1, f2, and event e1 constitute a sequence. Aggregating function fS replaces
this sequence. Semantically the aggregating function corresponds to execution
of functions f1 and f2.

Block Abstraction

To model parallelism or a decision point in a process, modelers use split
connectors with outgoing branches. Depending on the desired semantics, an
appropriate connector type is selected: AND, OR, or XOR. In the subsequent
parts of a process model these branches are synchronized with the corresponding
join connectors. A process fragment enclosed between connectors usually has a
self-contained business semantics. Therefore, the fragment can be replaced by
one function of coarse granularity. Block abstraction enables this generalization.
To define block abstraction we use a notion of a path in EPC—a sequence of
nodes such that for each node there exists a connection to the next node in
the sequence.

10 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

C1

C2

e11

f1

e12

ek1

fk

ek2

e21

f2

e22

e1

fB

e2

f0

fk+1

f0

fk+1

Fig. 1.4. Block abstraction

Definition 2. An EPC process fragment is a block if:

� it starts with a split and ends with a join connector of the same type
� all paths from the split connector lead to the join connector
� there is at most one function on each path
� each path between the split and the join contains only events and functions
� the number of the outgoing connections of the split connector equals the

number of the incoming connections of the join connector
� the split connector has one incoming connection and the join connector—

one outgoing.

Figure 1.4 describes the mechanism of block abstraction. Block abstraction
replaces an initial process fragment by a sequence of event, aggregating function,
and another event. Events assure that a new EPC is well-formed. Semantics of
the aggregating function corresponds to the semantics of the abstracted block
and conforms to the block type. For instance, if a XOR block is considered the
aggregating function states that only one function of the abstracted fragment
is executed.

Loop Abstraction

Often tasks (or sets of tasks) are iterated for successful process completion. In a
process model the fragment to be repeated is enclosed into a loop construct. In
EPC notation control flow enables loop modeling. Wide application of loops by
modelers makes support of loop abstraction an essential part of the abstraction

1 Business Process Model Abstraction 11

XORs

e1

e0

fL

e3

f1

e3

f2

e2

f0 f0

XORj

Fig. 1.5. Loop abstraction

approach. Therefore, one more elementary abstraction—loop abstraction— is
introduced. Following we define the process fragment considered to be a loop.

Definition 3. An EPC process fragment is a loop if:

� it starts with a XOR join connector and ends with a XOR split connector
� the process fragment does not contain any other connectors
� the XOR join has exactly one outgoing and two incoming connections
� the XOR split has exactly one incoming and two outgoing connections
� there is exactly one path from the split to the join and exactly one path

from the join to the split
� there is at least one function in the process fragment.

As shown in Figure 1.5 aggregating function fL replaces the whole process
fragment corresponding to a loop. Event e0 is inserted between functions f0
and fL in order to obtain a well-formed EPC model. An aggregating function
states that functions f1 and f2 are executed iteratively.

Dead End Abstraction

Exceptional and alternative control flows result in “spaghetti-like” process
models with lots of control flow branches leading to multiple end events. Ab-
straction aims to reduce excessive process details. Thus, abstraction mechanism
should be capable of eliminating these flows. Dead end abstraction addresses
this problem. First, the term dead end should be specified.

12 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

XOR

e1

e0

f1

f0

ek

fkf2

e2

ek+1

XOR

e1

e0

f1

fD

ek-1

fk-1

Fig. 1.6. Dead end abstraction

Definition 4. An EPC process fragment is a dead end if it consists of a
function, followed by a XOR split connector, followed by an event, followed by
a function, followed by an end event. The XOR split connector has only one
incoming connection.

Figure 1.6 visualizes the dead end abstraction mechanism. The initial
process fragment is provided on the left side of the figure. The dead end is
formed by functions f0 and fk, events ek and ek+1 and the XOR split con-
nector. The XOR split has k outgoing branches and abstraction removes the
k-th branch. The abstracted process is presented on the right side of Fig-
ure 1.6. Rectangles with dotted borders enclose the dead end fragment and its
replacement.

Dead end abstraction completely removes a XOR split branch which belongs
to a dead end. Aggregating function fD replaces function f0. An aggregating
function in dead end abstraction has the following semantics: upon an occur-
rence of function fD in a process, function f0 is executed. Afterwards, function
fk may be executed. Upon execution of function fk the branch is terminated
and fD is not left. Otherwise, the execution of the branch is continued. When
a XOR split has two outgoing connections in the initial process model, the
XOR split in the abstracted process model can be omitted. A new connection
from the aggregating function to the event, following the omitted XOR split,
should be added to the EPC.

Abstraction Strategy

A single application of an elementary abstraction is not of great value for the
task of process abstraction. Therefore, elementary abstractions can be invoked

1 Business Process Model Abstraction 13

according to an abstraction strategy—a rule of composition of elementary
abstractions. An abstraction strategy is a sequence of elementary abstraction
steps. Every step aims to simplify a process model. At each abstraction step one
elementary abstraction is applied. Since elementary abstractions are atomic,
i.e., they do not depend on the previous ones, one might come up with various
abstraction strategies. In general case different strategies lead to different
resulting process models.

We propose to organize the abstraction strategy in compliance with the
slider concept. Hence, first we aim to abstract from functions of low significance.
Once the function with the lowest significance is identified, it is tested to
which type of process fragment it belongs. If a process fragment is recognized,
appropriate abstraction transformation rules are applied. Otherwise, another
elementary abstraction is tested. The next elementary abstraction to test is
selected according to the predefined priority. Abstraction is continued until
either no more elementary abstraction process fragments are recognized, or
the lowest element significance in the process has reached the preset threshold.

An abstraction strategy using only one type of elementary abstraction
can be seen as a basic abstraction strategy. Basic abstraction strategy result
in process models where only sequential, dead end, block, or loop process
fragments are reduced. For instance, in case of the basic sequential abstraction
strategy sequences of an arbitrary length are reduced.

Advanced abstraction strategies combine several elementary abstractions
and define their priority. The priority dictates the application order of ele-
mentary abstractions. One possible strategy is the precedence of sequential,
dead end, block, and then loop abstraction. Application of one elementary
abstraction might enable further application of another one.

1.5 Case Study

In this section we conduct an in-depth analysis of the proposed mechanisms. We
evaluate the results of process model abstractions conducted in a joint project
with an industry partner. The project objective was to derive process model
abstraction mechanisms and to apply them on a process model repository
composed of around 4 000 models captured in EPC notation. The additional
requirement for abstraction was to preserve overall process effort, i.e., the
overall process effort before and after abstraction should stay unchanged.
We evaluate the developed abstraction mechanisms in terms of efficiency and
usefulness. An estimation of abstraction efficiency is based on the analysis of the
number of model nodes reduced by abstractions. Obviously, this measure does
not witness the usefulness of the abstraction. In order to learn the usefulness
of abstractions we appeal to the project partner’s expertise.

Following, we provide the results of performing abstraction on a subset of
models from the repository composed of 1 195 models. Each model consists of
10 or more nodes. Models with less than 10 nodes are not considered. Three

14 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

abstraction strategies take part in the case study. Each strategy uses one or
several elementary abstractions and applies them iteratively (see section 1.4.3).
The following abstraction strategies are used:

1. basic sequential abstraction (strategy 1)
2. sequential then block abstraction (strategy 2)
3. sequential, dead end, block, then loop abstraction (strategy 3).

Abstraction strategies are applied with a threshold level equal to the overall
process effort. This guarantees that an abstraction tries to reduce all the nodes
in a model to the point when no more abstractions are applicable.

Table 1.1 presents results of applying abstraction strategies, i.e., correspon-
dence between intervals of number of nodes in a model and the number of
models that fall into the interval, provided for original as well as abstracted
models. The table illustrates how different abstraction strategies reduce the
amount of nodes in models.

Table 1.1. Comparison of node reduction caused by various abstraction strategies

Number of nodes Original Strategy 1 Strategy 2 Strategy 3

1 to 10 0 274 511 871

11 to 20 464 359 306 156

21 to 30 225 182 137 82

31 to 40 130 150 81 54

41 to 50 118 69 56 20

51 to 60 65 36 38 2

61 to 70 47 33 29 4

71 to 80 31 29 18 4

81 to 90 22 15 5 0

91 to 100 22 14 2 0

> 100 71 34 12 2

Additionally, we use the notion of abstraction compression coefficient—a
ratio between the number of nodes in abstracted and original models. Each line
in Figure 1.7 corresponds to the probability density function of the compression
coefficient for a certain abstraction strategy. The line for strategy 1 hints on
the fact that most of the models were reduced by 40% or less. Whereas in the
case of strategy 3 the number of nodes in most models were reduced by 70% or
more. This clearly witnesses that strategy 3 excels its evaluated competitors.

In order to evaluate the usefulness of the abstraction approach we refer
to project partner’s experts. Abstractions capable of aggregating more model
elements are considered as most valuable. Thus in general case, strategy 3 can
be seen as more useful strategy. The project partners argued that the choice of
an abstraction method depends on the structure of a particular process model.

1 Business Process Model Abstraction 15

0

0,04

0,08

0,12

0,16

0,2

0,00 0,20 0,40 0,60 0,80 1,00
C o m p r e s s i o n R a t i o

P
r o

 b
 a

 b
 i

l i
 t

y

Strategy 1 Strategy 2 Strategy 3

Fig. 1.7. Comparison of compression ratios for 3 discussed abstraction strategies

For instance, strategy 1 can be seen as useful for some particular process model
if it allows same generalization as in the case of strategy 3.

1.6 Related Work

The problem of managing large complex process models emerges as BPM tech-
nologies penetrate modern enterprises. This challenging situation is addressed
by various approaches. The authors of several process modeling notations, like
Business Process Modeling Notation (BPMN) [3] or Yet Another Workflow
Language (YAWL) [1] envisioned this problem. These notations allow hierar-
chical structuring of models. The goal of the hierarchical model organization
is to distribute information describing a process among several levels with the
general process flow on the highest level of hierarchy and the process details on
the lowest one. Unfortunately, such a mechanism is not sufficient to cope with
the problem, since it assumes that the hierarchy is designed and maintained
manually. In [19] the authors propose an algorithm for identifying special kind
of regions called reducible subflows in workflow nets. Once such regions are
found, a process model can be decomposed into their hierarchy.

A number of studies focused on creation of process views from available
process models. The purpose of a process view is to hide certain fragments
of a process model. For instance, one can imagine an actor specific process

16 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

view or a process view reflecting parts of a process instance to be executed
(the last case corresponds to a process view on an instance level). Therefore,
the goal of a process view creation differs from the goal of process model
abstraction and can be seen as a more generic task. On the other hand, process
view creation focuses on the how question, but does not discuss the what of
abstraction, i.e. it does not say how to identify significant model elements.
Bobrik et al. in [2] propose an approach capable of creating customized process
views on model level and on instance level. The approach relies on graph
reduction rules. In [7] the authors propose a method for constructing views
aiming to ease communication between partners by adapting internal process
descriptions into ones suitable for external usage. As an input the approach
takes a process model captured in UML activity diagram notation and a user
requirement to hide certain process elements. In [11] the authors propose an
order preserving approach for creation of process views. An important issue is
that the mentioned approaches do not incorporate the notion of non-functional
properties of a process and, thus, do not define how non-functional properties
of a process (e.g., execution effort and execution cost) can be preserved during
transformations.

In [8], Günther and van der Aalst proposed a framework allowing to judge
about significance of model elements basing on their non-functional properties.
The framework bases on various metrics evaluating significance of process
model nodes and edges. The proposed technique can be employed to answer
the what question of abstraction, i.e. to derive reasonable significance values
for process model elements.

The abstraction mechanism proposed in this chapter makes use of the set
of elementary abstraction rules. Each rule has the goal of model simplification
and defines how a process model fragment is transformed. In [14] it is shown
how these rules can be extended for evaluation of non-functional properties of
model elements. In particular, it is described how properties of aggregating
elements are derived from the properties of aggregated. Graph transformation
rules are widely used for analysis of process model soundness and are well
studied in literature [6, 11, 12, 15, 17]. An approach proposed in [15] presents
rules facilitating soundness analysis of process models captured in the notation
proposed by Workflow Management Coalition. In [6] and [12] the authors focus
on the rules facilitating analysis of EPC models soundness. Cardoso et al. in
[4] propose a method for the evaluation of workflow properties (e.g., execution
cost, execution time, and reliability) based on the properties of workflow tasks.
However, the approach is restricted to block-structured process models free of
OR blocks.

The presented outlook of the related work witnesses: there is no compre-
hensive approach which addresses all the aspects of the business process model
abstraction task. Several approaches provide a solid basis of reduction rules,
capable of handling sophisticated graph-structured processes. However, these
approaches do not allow estimating process properties, such as effort or cost.
On the other hand, there is an approach (cf. [4]) supporting process properties

1 Business Process Model Abstraction 17

estimation, but it is limited to block-structured processes excluding OR block
constructs. Finally, to the best of our knowledge, there is no means for control-
ling process abstraction. Therefore, in this chapter we have shown how process
model abstraction can be conceptually realized. We have introduced the slider
concept—a mean for the user to control the abstraction. The approach uses
transformation rules proposed in [14]. The rules prescribe how the process
non-functional properties can be estimated.

1.7 Conclusions

In this chapter we presented a business process model abstraction technique—
an approach to derive process models of high abstraction level from the
detailed ones. We argued that the abstraction task can be decomposed into two
independent subtasks: learning process model elements which are insignificant
(abstraction what) and abstracting from those elements (abstraction how).
The proposed technique can be applied for abstraction of an arbitrary graph-
structured process model.

Several abstraction scenarios were provided to motivate the task of business
process model abstraction. These scenarios were used to extract abstraction
criteria. Afterwards, we proposed to adopt a slider concept in order to achieve
control over abstraction process. Finally, we discussed process model transfor-
mation rules which can be employed together with the slider for abstraction
of insignificant model elements.

We proposed a concrete scenario of applying graph transformation rules
for the purpose of model abstraction. Elementary abstractions: sequential,
block, loop, and dead end abstraction were presented. For every elementary
abstraction it was defined to which type of process fragment it can be applied
and in which model transformation it results. It was explained how these
individual abstractions can be combined into abstraction strategies. Derived
abstraction methodology preserves function ordering constraints of the initial
model. To the limitation of the approach one can count the fact that not an
arbitrary model can be abstracted to one function, if such a behavior is desired.
We conducted a case study on abstraction efficiency and usefulness with
the industry project partner and presented obtained statistical results. The
technique of process model abstraction can be extended by other transformation
rules that assume process graph generalization, e.g., rules proposed in [11, 15].

References

1. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language (Revised version). Technical Report FIT-TR-2003-04, Queensland
University of Technology, Brisbane, 2003.

2. R. Bobrik, M. Reichert, and Th. Bauer. View-Based Process Visualization. In
BPM, volume 4714 of LNCS, pages 88–95. Springer, 2007.

18 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

3. BPMI. Business Process Modeling Notation, 1.1 edition, February 2008.
4. J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Modeling Quality of Service for

Workflows and Web Service Processes. Technical report, University of Georgia,
2002. Web Services.

5. T. Davenport. Process Innovation: Reengineering Work through Information
Technology. Harvard Business School Press, Boston, MA, USA, 1993.

6. B. van Dongen, M. Jansen-Vullers, H. Verbeek, and W. M. P. van der Aalst.
Verification of the SAP Reference Models Using EPC Reduction, State-space
Analysis, and Invariants. Comput. Ind., 58(6):578–601, 2007.

7. R. Eshuis and P. Grefen. Constructing Customized Process Views. Data Knowl.
Eng., 64(2):419–438, 2008.

8. C. Günther and W. M. P. van der Aalst. Fuzzy Mining—-Adaptive Process
Simplification Based on Multi-perspective Metrics. In BPM 2007, volume 4714
of LNCS, pages 328–343, Berlin, 2007. Springer Verlag.

9. M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for
Business Revolution. HarperBusiness, April 1994.

10. G. Keller, M. Nüttgens, and A. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report
Heft 89, Veröffentlichungen des Instituts für Wirtschaftsinformatik University of
Saarland, 1992.

11. D. Liu and M. Shen. Workflow Modeling for Virtual Processes: an Order-
preserving Process-view Approach. Information Systems, 28(6):505–532, 2003.

12. J. Mendling, H. Verbeek, B. van Dongen, W. M. P. van der Aalst, and G. Neu-
mann. Detection and Prediction of Errors in EPCs of the SAP Reference Model.
Data Knowl. Eng., 64(1):312–329, 2008.

13. A. Polyvyanyy, S. Smirnov, and M. Weske. Process Model Abstraction: A Slider
Approach. In EDOC ’08: Proceedings of the 12th IEEE International Enterprise
Distributed Object Computing Conference, München, Germany, 9 2008. IEEE
Computer Society.

14. A. Polyvyanyy, S. Smirnov, and M. Weske. Reducing Complexity of Large EPCs.
In EPK’08 GI-Workshop, Saarbrücken, Germany, 11 2008.

15. W. Sadiq and M. Orlowska. Analyzing Process Models Using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

16. A. Scheer, O. Thomas, and O. Adam. Process Aware Information Systems:
Bridging People and Software through Process Technology, chapter Process Mod-
eling Using Event-Driven Process Chains, pages 119–145. John Wiley & Sons,
2005.

17. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In ICSOC
2007, volume 4749, pages 43–55. Springer, 2007.

18. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer Verlag, 2007.

19. L. Zerguini. A Novel Hierarchical Method For Decomposition And Design Of
Workflow Models. volume 8, pages 65–74, Amsterdam, The Netherlands, 2004.
IOS Press.

	1 Business Process Model Abstraction
	Introduction
	Process Model Abstraction Scenarios
	Abstraction Slider
	Process Model Transformation
	Elimination vs. Aggregation
	Transformation Requirements
	Transformation Rules
	Sequential Abstraction
	Block Abstraction
	Loop Abstraction
	Dead End Abstraction
	Abstraction Strategy

	Case Study
	Related Work
	Conclusions
	References

